联合蛋白质组学和靶向代谢组学揭示慢性乙型肝炎中肝胆湿热证的物质基础

Integrating proteomics and targeted metabolomics to reveal the material basis of liver-gallbladder damp-heat syndrome in chronic hepatitis B

  • 摘要:
    目的 阐明肝胆湿热证(LGDHS)在中医框架内作为慢性乙型肝炎(CHB)辅助诊疗手段的生物学基础。
    方法 本研究于2018年8月21日至2020年12月31日期间从上海中医药大学附属曙光医院招募CHB患者和健康志愿者,并将他们分为三组:健康组、LGDHS组和潜在症状(LP)组。使用基于同位素标记相对和绝对定量(iTRAQ)的蛋白质组学分析,以识别差异表达蛋白(DEPs)。通过超高效液相色谱串联质谱(UPLC-MS/MS)对血清样本进行代谢组学分析,鉴定差异代谢物(DMs)。采用京都基因与基因组百科全书(KEGG)和基因本体论(GO)富集分析,探讨LGDHS失调的生物通路。使用主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)进行组间分离和关键代谢物及蛋白的筛选。通过受试者工作特征(ROC)曲线分析评估关键生物标志物的诊断性能,使用逻辑回归模型评估其预测准确性。多重检验采用Benjamini-Hochberg方法对多重测试进行P值校正以控制伪发现率(FDR)。此外,利用独立的微阵列数据和实时定量聚合酶链反应(RT-qPCR)验证潜在生物标志物。
    结果 研究共招募了150名参与者,包括健康组(n = 45)、LGDHS组(n = 60)和LP组(n = 45)。通过PCA和OPLS-DA从蛋白质组学中共鉴定254个DEPs,代谢组学分析中发现72个DMs。DEPs主要富集于免疫和补体通路,DMs涉及氨基酸和能量代谢通路。综合分析筛选出7个关键生物标志物,包括类粘蛋白1(ORM1)、天冬酰胺合成酶(ASNS)、溶质载体家族27成员5(SLC27A5)、葡萄糖苷酶IIα亚基(GANAB)、己糖激酶 2(HK2)、5-甲基四氢叶酸-同型半胱氨酸甲基转移酶(MTR)和麦芽糖酶-葡糖淀粉酶(MGAM)。微阵列验证显示这些基因在ROC曲线分析中的曲线下面积(AUC)值范围为0.536至0.759。其中,ORM1ASNSSLC27A5在区分LGDHS患者方面表现出显著的差异能力(分别为P = 0.016、P = 0.035、P < 0.001),对应的AUC值分别为0.749、0.743、0.759。逻辑回归模型结合这三个基因后,AUC达到0.939,显示出较高的鉴别能力。RT-qPCR进一步验证了ORM1SLC27A5在LGDHS与LP组之间的差异表达(分别为P = 0.011、P = 0.034),ASNS也显示出和基因芯片一致的表达趋势(P = 0.928)。
    结论 本研究通过整合多组学技术,阐明了CHB中LGDHS的分子机制。生物标志物ORM1ASNSSLC27A5的鉴定为LGDHS的客观诊断奠定了基础,有助于推动中医证候诊断的标准化和现代化。

     

    Abstract:
    Objective To elucidate the biological basis of liver-gallbladder damp-heat syndrome (LGDHS) within the framework of traditional Chinese medicine (TCM) as a complementary diagnostic and therapeutic approach in chronic hepatitis B (CHB).
    Methods CHB patients and healthy volunteers were enrolled from Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine between August 21, 2018 and December 31, 2020. They were divided into three groups: healthy group, LGDHS group, and latent syndrome (LP) group. Proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify differentially expressed proteins (DEPs). Metabolomic profiling via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was applied to serum samples to detect differentially regulated metabolites (DMs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment were employed to explore dysregulated pathways. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to visualize group separation and identify key metabolites and proteins contributing to LGDHS differentiation. Receiver operating characteristic (ROC) curve analysis evaluated the diagnostic performance of key biomarkers, while logistic regression models assessed their predictive accuracy. P values were corrected for multiple tests using the Benjamini-Hochberg method to control the false discovery rate (FDR). Validation of potential biomarkers was conducted using independent microarray data and real-time quantitative polymerase chain reaction (RT-qPCR).
    Results A total of 150 participants were enrolled, including healthy group (n = 45), LGDHS group (n = 60), and LP group (n = 45). 254 DEPs from proteomics data and 72 DMs from metabolomic profiling were identified by PCA and OPLS-DA. DEPs were mainly enriched in immune and complement pathways, while DMs involved in amino acid and energy metabolism. The integrated analysis identified seven key biomarkers: α1-acid glycoprotein (ORM1), asparagine synthetase (ASNS), solute carrier family 27 member 5 (SLC27A5), glucosidase II alpha subunit (GANAB), hexokinase 2 (HK2), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and maltase-glucoamylase (MGAM). Microarray validation confirmed the diagnostic potential of these genes, with area under the curve (AUC) values for ROC analysis ranging from 0.536 to 0.759. Among these, ORM1, ASNS, and SLC27A5 showed significant differential ability in differentiating LGDHS patients (P = 0.016, P = 0.035, and P < 0.001, respectively), with corresponding AUC of 0.749, 0.743, and 0.759, respectively. A logistic regression model incorporating these three genes demonstrated an AUC of 0.939, indicating a high discriminatory power for LGDHS. RT-qPCR further validated the differential expression of ORM1 and SLC27A5 between LGDHS and LP groups (P = 0.011 and P = 0.034, respectively), with ASNS showing a consistent trend in expression (P = 0.928).
    Conclusion This study integrates multi-omics approaches to uncover the molecular mechanisms underlying LGDHS in CHB. The identification of biomarkers ORM1, ASNS, and SLC27A5 offers a solid basis for the objective diagnosis of LGDHS, contributing to the standardization and modernization of TCM diagnostic practices.

     

/

返回文章
返回