中医药研究中多组学与人工智能结合应用的进展与前景分析

Advances and prospects of the integration of multi-omics and artificial intelligence in traditional Chinese medicine research

  • 摘要:
    目的 利用文献计量学方法,分析人工智能(AI)结合中医药多组学研究领域的研究热点、发展趋势及面临的问题。
    方法 研究者检索了中国期刊全文数据库(CNKI)、万方数据知识服务平台、中文科技期刊数据库(维普)、超星中文学术期刊全文数据库,以及PubMed和Web of Science,收集了从建库截至2024年12月31日的AI结合中医药多组学研究相关主题文献。使用Excel 2021、NoteExpress v4.0.0、CiteSpace 6.3.R1软件对文献数据进行可视化分析,包括发文趋势、作者、发文量、研究机构和关键词。并对中医药多组学研究中 AI 应用模式进行分类总结。
    结果 纳入文献共计1106篇(中文932篇,英文174篇)。自2010年起,相关文献发文量持续增长,且在2016年后增长速度明显加快。学科在国内形成了多个机构区域合作网络,核心机构包括北京中医药大学、中国中医科学院、上海中医药大学、南京中医药大学等。关键词分析显示,AI技术在中医药多组学研究中的应用主要集中在代谢组学研究,常用聚类分析、数据挖掘等算法,以中药研究为主,其次为复方和疾病证候研究。
    结论 机器学习方法是当前AI在中医药结合多组学研究领域最主要的结合形式,被用于处理组学数据与探索数据潜在规律。中医药领域除了研究使用高通量技术的组学信息,还纳入中药、临床表型等数据,向多组学联合分析、数据高纬度、信息多模态方向发展,深度学习方法是学科热点趋势。

     

    Abstract:
    Objective To map the research hotspots, developmental trends, and existing challenges in the integration of artificial intelligence (AI) with multi-omics in traditional Chinese medicine (TCM) through comprehensive bibliometric analysis.
    Methods China National Knowledge Infrastructure (CNKI), Wanfang Data, China Science and Technology Journal Database (VIP), Chaoxing Journal Database, PubMed, and Web of Science were searched to collect literature on the theme of AI in TCM multi-omics research from the inception of each database to December 31, 2024. Eligible records were required to simultaneously address AI, TCM, and multi-omics. Quantitative and visual analyses of publication growth, core authorship networks, institutional collaboration patterns, and keyword co-occurrence were performed using Microsoft Excel 2021, NoteExpress v4.0.0, and Cite Space 6.3.R1. AI application modes in TCM multi-omics research were also categorized and summarized.
    Results A total of 1 106 articles were enrolled (932 Chinese and 174 English). Publication output has increased continuously since 2010 and accelerated after 2016. Region-specific collaboration clusters were identified, dominated by Beijing University of Chinese Medicine, China Academy of Chinese Medical Sciences, Shanghai University of Traditional Chinese Medicine, and Nanjing University of Chinese Medicine. Keyword co-occurrence analysis revealed that current AI applications predominantly centered on metabolomics and algorithms such as cluster analysis and data mining. Research foci mainly ranked as follows: single herbs, herbal formulae, and disease-syndrome differentiation.
    Conclusion Machine learning methods are the predominant integrative modality of AI in the realm of TCM multi-omics research at present, utilized for processing omics data and uncovering latent patterns therein. The domain of TCM, in addition to investigating omics information procured through high-throughput technologies, also integrates data on traditional Chinese medicinal substances and clinical phenotypes, progressing towards joint analysis of multi-omics, high-dimensionality of data, and multi-modality of information. Deep learning approaches represent an emerging trend in the field.

     

/

返回文章
返回