通过人工智能与数字工具复兴尤纳尼医学的经典尿液诊断:迈向传统医学体系的整合信息学

Reviving classical Bawl (urine) diagnostics in Unani medicine via artificial intelligence and digital tools: toward integrative informatics for traditional systems

  • 摘要: 在尤纳尼医学中,Bawl(尿液)被视为一项关键诊断工具,借助颜色、黏稠度、沉淀物、清澈度、泡沫、气味与排量等参数来评估体液失衡。本文为概念性综述,探讨如何将这些经典诊断指标与现代尿液分析标志物(如胆红素、蛋白、酮体、沉淀物等)结合,并通过新兴的人工智能(AI)框架加以研究。潜在应用包括使用ResNet-18 进行颜色分类、YOLOv8进行沉淀物检测、长短期记忆网络(LSTM)估算黏度、以及使用EfficientDet 进行泡沫分析,并以标准化的尿液图像/视频作为未来数据集的基础。此外,我们提出一种比较本体论,以将尤纳尼诊断视角与传统中医的诊断方法相对照,促进跨体系整合。通过将经典诊断学认识论与计算智能相结合,本文强调了开发基于AI的决策支持系统的路径,以促进个性化、可及性强且支持远程医疗发展的健康服务。

     

    Abstract: In Unani medicine, Bawl (urine) is recognized as a key diagnostic tool, with humoural imbalances assessed via parameters like color, consistency, sediment, clarity, froth, odor, and volume. This conceptual review explores how these classical diagnostic indicators may be contextualized alongside modern urinalysis markers (e.g., bilirubin, protein, ketones, and sedimentation) and examined through emerging artificial intelligence (AI) frameworks. Potential applications include ResNet-18 for color classification, You Only Look Once version 8 (YOLOv8) for sediment detection, long short-term memory (LSTM) for viscosity estimation, and EfficientDet for froth analysis, with standardized urine images/videos forming the basis of future datasets. Additionally, a comparative ontology is proposed to align Unani perspectives with diagnostic approaches in traditional Chinese medicine, encouraging cross-system integration. By synthesizing classical epistemology with computational intelligence, this review highlights pathways for developing AI-based decision support systems to promote personalized, accessible, and telemedicine-enabled healthcare.

     

/

返回文章
返回