基于保色生成对抗网络的中医面诊图像隐私保护方法

Facial color-preserving generative adversarial network-based privacy protection of facial diagnostic images in traditional Chinese medicine

  • 摘要:
    目的 提出一种基于保色生成对抗网络(FCP-GAN)的面部图像生成方法,旨在有效分离中医面诊中的身份特征与诊断面色特征,以解决医学图像分析中隐私保护的关键挑战。
    方法 研究数据来源于2023年4月23日至6月10日在南京中医药大学采集的参与者面部图像,采集过程使用中医全身望诊数据采集设备并在受控光照下进行。所提出的FCP-GAN模型通过三个关键组件实现去除身份特征与保留面色特征的双重目标:(1) 多空间融合模块,全面提取红、绿、蓝(RGB),色调、饱和度、明度(HSV)和Lab颜色空间的颜色属性;(2) 生成器中引入高效通道注意力(ECA)机制,以增强对诊断关键颜色通道的表征能力;(3) 结合去标识化对抗损失与专用颜色保持损失的双重损失函数。模型采用分层5折交叉验证策略进行训练与评估,并与4种基线生成模型进行比较:条件生成对抗网络(CGAN)、深度卷积生成对抗网络(DCGAN)、双判别器条件生成对抗网络(DDCGAN)、医学生成对抗网络(MedGAN)。主要从以下4个维度评估性能:图像质量 峰值信噪比(PSNR)、结构相似性(SSIM)、分布相似性 弗雷歇起始距离(FID)、隐私保护效果(人脸识别准确率)和诊断一致性 均方误差(MSE)、皮尔逊相关系数(PCC)。
    结果 分析最终纳入216名受试者的面部图像。与基线模型相比,FCP-GAN取得了最优性能,其PSNR为31.02 dB,SSIM为0.908,相较最强基线模型(MedGAN)分别提升了1.21 dB和0.034;其FID值(23.45)也为所有模型中最低,表明生成图像与真实图像的分布最为接近。消融实验证实,多空间特征融合与ECA机制对此性能提升贡献显著。分层5折交叉验证确认了模型的稳健性,所有结果均以多次运行的平均值 ± 标准差报告。该模型能有效保护隐私,将人脸识别准确率从原始图像的95.2%降至生成图像的60.1%。至关重要的是,它保持了较高的诊断保真度,原始图像与生成图像在关键中医面部特征上表现出低MSE (< 0.051)和高PCC (> 0.98)。
    结论 FCP-GAN模型为保障中医诊断图像隐私提供了一种有效的技术方案,能够成功去除身份特征,同时保留临床至关重要的面部颜色特征。本研究对开发智能、安全的中医远程医疗系统具有重要价值。

     

    Abstract:
    Objective To develop a facial image generation method based on a facial color-preserving generative adversarial network (FCP-GAN) that effectively decouples identity features from diagnostic facial complexion characteristics in traditional Chinese medicine (TCM) inspection, thereby addressing the critical challenge of privacy preservation in medical image analysis.
    Methods A facial image dataset was constructed from participants at Nanjing University of Chinese Medicine between April 23 and June 10, 2023, using a TCM full-body inspection data acquisition equipment under controlled illumination. The proposed FCP-GAN model was designed to achieve the dual objectives of removing identity features and preserving colors through three key components: (i) a multi-space combination module that comprehensively extracts color attributes from red, green, blue (RGB), hue, saturation, value (HSV), and Lab spaces; (ii) a generator incorporating efficient channel attention (ECA) mechanism to enhance the representation of diagnostically critical color channels; and (iii) a dual-loss function that combines adversarial loss for de-identification with a dedicated color preservation loss. The model was trained and evaluated using a stratified 5-fold cross-validation strategy and evaluated against four baseline generative models: conditional GAN (CGAN), deep convolutional GAN (DCGAN), dual discriminator CGAN (DDCGAN), and medical GAN (MedGAN). Performance was assessed in terms of image quality peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), distribution similarity Fréchet inception distance (FID), privacy protection (face recognition accuracy), and diagnostic consistency mean squared error (MSE) and Pearson correlation coefficient (PCC).
    Results The final analysis included facial images from 216 participants. Compared with baseline models, FCP-GAN achieved superior performance, with PSNR = 31.02 dB and SSIM = 0.908, representing an improvement of 1.21 dB and 0.034 in SSIM over the strongest baseline (MedGAN). The FID value (23.45) was also the lowest among all models, indicating superior distributional similarity to real images. The multi-space feature fusion and the ECA mechanism contributed significantly to these performance gains, as evidenced by ablation studies. The stratified 5-fold cross-validation confirmed the model’s robustness, with results reported as mean ± standard deviation (SD) across all folds. The model effectively protected privacy by reducing face recognition accuracy from 95.2% (original images) to 60.1% (generated images). Critically, it maintained high diagnostic fidelity, as evidenced by a low MSE (< 0.051) and a high PCC (> 0.98) for key TCM facial features between original and generated images.
    Conclusion The FCP-GAN model provides an effective technical solution for ensuring privacy in TCM diagnostic imaging, successfully having removed identity features while preserving clinically vital facial color features. This study offers significant value for developing intelligent and secure TCM telemedicine systems.

     

/

返回文章
返回